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The method of expansion in serves in self-similar components is used for de- 
riving solutions of gasdynamic equations for some off-design modes of flow 
in a plane nozzle, particularly in the case when local supersonic zones inter- 
lock at the nozzle axis (the Taylor limit flow). Analysis of expansions in 

self-similar solutions is carried out simultaneously in the stream and the ho- 
dograph planes. The first three terms of expansion are determined for the 
Taylor limit flow in a plane Lava1 nozzle. In that case the correction terms 
retain the property of double symmetry about the horizontal and vertical 
axes that pass through the nozzle center. 

The possibility of realizing two flow patterns with nonanalytic velocity distribution 
along the Lava1 nozzle axis besides that provided by Meyer’s solution [l ,2] which is 

analytic in the nozzle center neighborhood was shown in [3,4]. The self-similarity in- 
Cb2.S n = 2, 3, 5, and ii (zy-” is the invariant of self-similar solution) correspond 
in the class of self-similar solutions of the approximate system of transonic equations to 

gas flows in Lava1 nozzles. The gasdynamic interpretation of the case of n = 5 in 
addition to its other values was proposed in [5] in the form of an asymptotic retardation 
flow in a supersonic diffuser with shock wave formation. 

It was found in [S] that solutions which correspond to the above indices are alge- 
braic and admit a convenient parametric representation, and it was shown that one of 

the solutions corresponds to the limit case in which local supersonic zones are locked on 
the nozzle axis. These solutions were thoroughly discussed in [7 1, where the existence 
of a wide class of asymmetric nozzles was established. 

The problem of determination of higher approximations for various types of asymp- 
totic flows in nozzles was formulated in [4] and its partial solution, which shows the 

transition from approximate transonic equations to the exact Chaplygin equations, was 
obtained. However the question of parameters of form, i. e. of constants which usually 
appear in expansions in self-similar components and provide information on the form of 

nozzle walls. A complete solution is known only for the Meyer type flow [8]. 
The indicated above values of self-similarity index are remarkable by that with 

them the passage of the general integral of ordinary differential equations through a 
singular point of the nodal type is analytic, a point that represents the limit character- 
istic and determines the existence of additional asymptotics [3,4]. Analysis of higher 
approximations show that they may retain that property, and that the condition of flow 

symmetry about the nozzle axis is immaterial, as is the case of the zero approximation I? 1. 
1. plane potential flows of ideal perfect gas are defined by the system of equations 

(aa - cpX”)%X - ~WP,cp,, + (a” - %/%W = 0 (1.1) 
(q&c” + ‘pv7 / 2 + a2 / (Y - 1) = (Y + 1) / [2 (Y - 1)J 

303 



304 A. L . Brezhnev and I. A. Chernov 

where t and $/ are Cartesian coordinates reduced to dimensionless form relative to 
some characteristic length, cp is the dimensionless velocity potential, a is the local 
speed of sound relative to its critical value, and y is the ratio of specific heats. 

We seek a solution of system& 1) of the form 

(1.2) 

where c is the self-similar variable and /,zr? 
decreasing sequence, with kl >. 3n - 2. 

k,, . . . are exponents that form a non- 

Substituting (1.2) into (1.1) we obtain for q. a nonlinear equation and for qi (i = 
1, 2, . . .) a recurrent system of linear equations 

(n”5” - qo’)qo” - n5 (5n - 5) qo’ + (3n - 2)(3n - 3)q, = 0 (1.3) 

(n”5” - qo’)qi” - I qo” + (2ki - n - l)nClqi’ + 
(1.4) 

ki (ki - l)qi = Hi 

where Hi depend on 40, . . ., Qi-1 and on their derivatives. 

The system (1.3 ) , (1.4) has the singular point c, defined by the relationship 

n2cc2 - qo’ (5,) = 0. The generalized parabola 5 = 5, corresponds in the flow 
plane to the limit characteristic of the transonic approximation. 

We define exponents k, by the condition that the general integrals of Eqs. (1.4 ) 
must be analytic along the limit characteristic. It is sufficient to consider the approp- 
riate homogeneous equations, since the right-hand sides of (1.4) regularly depend on 

Qo, * * * 7 Qi-1 and their derivatives, and the particular solution of (1.4 ) is analytic 

if all preceding solutions are analytic. The exponent for which the general integral of 
Eqs. (1.4) is analytic at point cc will be called singular and denoted by ki*. 

Let Qi (i = 1, 2, . . .) be the solution of the homogeneous equation correspon- 
ding to (1.4 ) . We expand functions q. and Qi in power series in the neighborhood 
of the limit characteristic, and obtain 

q. = am (5 - 5X’, Qi = km (5 - 5,)" (1.5) 

where summation is carried out over integral nonnegative values of the recurrent index. 
The coefficients a,,, and bi, are determined by substitution into related differen- 
tial equations and can be represented in the recurrent form 

a0 = 5 (n5J3 / (9n - S), al = (nQ2, a2 = (n 

am = A, / [mn& (-7n + 5 + mn + m)l 

A,=-aa,_,[n2(m-4)“+5n(m-4)+6]+& 
,IL__l 

X,,=$C 1 (I71 +- 2 - 1) ala,n+,_l, m = 3, 4, 
1=3 

bi, = Bi, I [rnn& (- 2ki - n + 1 + mn + rn)j 

Bi, = h, m-1 [n (m - 1) (2ki - mn + n - 1) - ki (ki 

- lb& 12 (1.6) 

I)1 + G7n 
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where 2s and z ti are to be set equal zero, and his is an arbitrary constant. 
The indices n = 2, 3, 5, and 11 are exceptional in the sense that coefficients 

as, a4, as, and a, can be taken respectively for these as arbitrary constants,since 

thenumerator and the denominator in (1.6 ) vanish. If for an arbitrary n only a parti - 
cular integral of Eq. (1.3 > is analytic on the limit characteristic, then for the indicated 

n this general integral has that property [3,4]. 

The analyticity of the general integral Qi is equivalent to the arbitrariness of 
one of the coefficients him (m > 1) in (1.5 ) which occurs when the numerator 

and denominator b im (1.6) simultaneously vanish. It is posatble to show by the appro- 
priate analysis that the particular values of ki * form for n = 2, 3, 5, and 11 the following 

sequence : 
ki* = 3n - 2 + iA, A = (n + 1) I2 (1.7) 

where i is a positive integer and the condition 

i @ {ir}, ir = 1% - 7 + I (on - 6)l / (n + I), 1 =o, I,. . . (1.8) 

is satisfied. 
Note that for solving system (1.1) it is necessary to include in expansion (1.2) not 

only exponents (1.7 ) with condition (1.8 ) but, also, exponents of the form km, = 
3n - 2 + mA + j (2n - 2), where m = 0, 1, . . . and j = 1, 2, . . . . 

We denote by Qmj the coefficient at the power of 9 with exponent k,, for 

which we have Eq. (1.4 ). If km1 does not coincide with any ki*, then the repre- 

sentative qml which is analytic on the limit characteristic is a particular integral of 
that equation. 

The inequality A < (2n - 2) is satisfied for the considered indices of self - 

similarity. The case of n = 2 is taken as known and is not considered here. We 

denote by E the integral part of number (2n - 2) / A. The solution of Eqs. (1.1) 
can now be represented in the form of series in nondecreasing powers of y 

E 
cp = 5 + ysn-2 b ,_4iYiA + q01YPn-2 + * * .) 

(1.9) 

The first correction to the solution of transonic equations was determined in [g], 
which makes it possible to write the particular integral for m = 0, j = 1 in the form 

C701c; 5-’ (v + I)+ {(Y + 6/,)[(3n - 2)q, - ncqo’l - (1.10) 
- 5/2)Qo)40’ 

Determination of the flow field is more conveniently carried out using the velocity 
vector components u = (pr and V = ‘pg. In conformity with (1.9) the expan- 

sions for u and D are of the form 
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(1.11) 

E 

v = F3 il;;,&P -+ go1y wb-2 + . . .) 
fi = Qi’7 gi I=I ki*qi - ncqt’, i =O,. . ., E 

fo1 = QOl’, g01 = Pn - 4k01 - nEqol’ 

2. Using fnnctions fo (5) and go ( 5) derived in [S ] we determine represent- 
ative velocity components fi and gi (i = 1, . . . , E) for n = 3, 5, and 11. 

Direct integration of related equations (1.4 ) is difficult, hence we resort to the hodo - . 
graph method. Let us consider the stream function 9 which depends on the angle of 
~c~nation fj of velocity and on the variable q introduced by Frank1 El], That func- 

tion satisff es the equation 

Wee + %lll + b W%l = 0 (2.1) 

where b (q) is known function [IO 1, III the transomc approximation ECJ. (2, I ) is re- 
placed by the Tricomi equation 

rl%e + %Tl = 0 (2.2) 

We represent the solution of Eq. (2.1) in the form of expansion 

9 = P” *i $i lt) pib + P’+*” 901 tt) + * * - (2.3) 

p = (e2 + ~~*~3~'~, t = t&i+, h = (3n- 3)-l, 6 = hA 
which must correspond to expansion (1.9). 

Substituting (2.3 ) into (2. I.), for the determination of coefficients vi we obtain 
the sequence of equations 

(1 - 839 j rt - ‘/&ki d- (A f is)@+ $- ‘/a $ is)& =I 0, i = 0, . . ., E (2.4) 

The general integral of this equation is expressed in terms of the hypergeometric 

functions 
~i=AiF(--3\j/- i6 / 2, h / 2 -+ If6 + i6 I 2, ‘12; t”) f 

BitF (~-4 I 2 t_ ‘1’2 - 8 / 2, h / 2 _t ‘l, + ii? / 2, V2; t”) 

where At and Bi are arbitrary constants. 
The analysis carried out with the use of Schwartz tables [S ] shows that functions 

$\pi are algebraic for h = l/s, ‘/I~, ‘/so (i tf {i,}) . They can be determined using 

formulas of’ddffferentiation of hypergeometric functions, commencing with the known 
solutions for q. when ?L = I/G, 1/12, l/30. Function $01 satisfies the nonhomo- 
gene- equation whose general integral is not always algebraic and may contain loga- 
rithmic terms [4]. A particular solution of that equation was obtained by Falkovich [lo ] ; 
it corresponds to correction (1.10 ) . 

The potential cp can also be expanded in series 
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The coefficients of ‘pi are expressed in terms of 9i as follows : 

(A + ‘/a + td)(pf = (‘/p)‘la (1 - t”)“‘$i’, f ~0, . . .,, E (2.5) 

Note that coefficients 9, (i = 0, . . ., E) satisfy the homogeneous equations 
(2.4) and are actually determined by the Tricomi equation (2.2). Hence the relation- 
ships of the approximate transonic theory remain valid up to the order pb+E8 , in 
particulary % 9 and% =2: (P,i,e. 

(2.6) 

We expand the module of the velocity vector V = (ua + dl)% in powers of q [2 ] 

V = V(q) = 1- (Y + v-‘/‘11 + 0 W) 

Expansions of velocity vector components can then be written as follows: 

u=vO0se=i - (y + 1) -‘h(Vs;)“$l - P)‘” psi* + o(py 

u = V sin e = tp + 0 (p) 
(2.7) 

On the other hand, the ~bs~~tion of (2.6 ) into (1.11 f yields similar expansions 
of ~8 and v in powers of p, which contain intermediate terms of the hind pm. The 
coefficients at such powers must be set equal zero, as implied by (2.7 ), From this we 
obtain the relation between the velocity representatives fi and gi in terms of pre- 
ceding terms and known coefficients $JQ and cpf. For compactness related formulas 
we use the notation 

xi = cp&;-iA, q = x,y-, U* = fip-5+a 

Y* = l#*qp, 94 = ygjl+*A, vi = g*y”-s+“A 

For bigher app~x~atio~ of velocity we then have the expressions 

% =- A ox, u, = - A,, - A, - Aez=t us = --de - AIS - (2.8) 
A $1 - A,,a - A,$ - dOIs, . . . 

AiJ = wxq + UQ,YJ, Aij’ = (%hasj* + uin,q~j + @‘&iw~$ 

Aif’ = ($1 (uipcx “1’ + UlwG!lls) + V/s) (“idjayf + uizvvzJYP) 

Am = b&j~k + Uir~ (zjvk + zky1) + %dJYk~ ‘** 

where subscripts z and y denote the related partial derivative. 
Similar formulas hold for vi. 

3. We shall indicate the form of coefficients Xi and Yi for n = 3, 5, and 11. 
Let .&Jo, G,, I&, and D1 be arbitrary constants t and s be a parameter which admits 
real valuea. For n = 3 we have E = 2. Then 
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X, = - (3l/r%/ 5) GJI,M,N,“, Y, = D,N,No-3 

5 = - G,JITI~N,-~ 

MO = E,s3 + 1 + 1/3(sZ - Eo,s), N, = s + E, 

Ml = -EE,s5+1+5(s4-EEls), N,=s3+El- 

1/T (E,s2 - s) 

Coefficients x2 and Y, must be set equal zero in conformity with condition (1.8 ). 
We use here only the particular solution (2.8 ) . 

I Note that when E,,= Ei= 0 both, the 
principal terms and the higher approxima - 

tions define a flow that is symmetric about 
the z - and the y -axes [S 1. The depend- 
ence of 0.25 - 10-2f,, 0.25 - IO-*g,, 
0.2.10-*f,, 0.2.10-6g,, 0.125~10-2f,,, 
and 0.25. 10-6go, on the self similar vari- 

able for the following constants: 

G, = (V2) 1/2 + J’-%, D, = 

-5 / (121/%To2) 

are shown in Fig. 1 by curves l- 6, respect- 

ively . 
A class of asymmetric flows that obtain 

if at least one of constants E, or E, is 

Fig. 1 
nonzero is also possible. 

For n = 5 we have E = 2 , and then 

X, = (5 I 2)G,,D1M,No-8, Y, = D&J,-* 
x, = (35 I 11) GJ@?,N,-ll, Y, = DJVJVo-', 5 = G,M,N,-6 
M,==--l/~(is6+Eo)+5(Eos3-~2), N,=E,,s+l 

M, = --se + E, + 8(E,sa - s2) + 4n(E,s3 + 9) 

N, = E,s* + 1 + 2 l/z (s3 - E,s) 
Al, = JI'?f (s" + E,) + 11 (E2se - s2) - 33 (9 - E,s3) 

N, = E2s7 + I - 7 (s6 + E,s) - 7 l/z( E,s* - 9) 

For n = 11 we obtain E = 3. The related representatives in the hodograph 
plane are defined as follows : 

X, = (77 i 17) GoD,M,No-17, Y, = DININ,-’ 

X, = (143 I 23) G&2M2N,,-23, Y, = D,N,N,-l3 

X3 = (209/29) G@9M3N,-29, Y, = -D,N,N,+’ 
5 = GoMoNo-’ 

MO = .P + E, - 11 (E,s’O + s) + 66 (8 - E,sb), No = sf E, 
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MI = E,sl' + 1 - 17 (P - El?) + 119 (E,s~~ - Ss) + 
187 (P + &s’) 

IV, = E,s' + 1 + 7 (s6 - E,s2) 
M2 = s23 - E, - 46(E2s20 - s3) + 207(&' + E,ti) + 

1173 (E2slb + ss) - 391 (s13 - E2s'O) 
N, = s13 - E2 + 26 (Es&O - s3) - 39(sS + E2s6) 
M3 = .P - E - 87 (E,s~~ + se) + 435 (s= + E,tF) + 

3335 (E3s20 "_ d') - 6670(SQ - Es'*) 
N3 = -slB + E, - 57 (E3s16 + s4) + 171 (s14 + E,?) + 

247 (E,slO - d') 

For the considered values of n each coefficient Xi and Y+ is of the form 

X,=l'JVod, Y,=Q&owb, a=h+iA,bb=I+iA 

where P, and Qb are polynomials of corresponding power. 

Authors thank S . V. Fal ‘kovich for the useful discussion. 
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